Hierarchical Nanoflowers on Nanograss Structure for a Non-wettable Surface and a SERS Substrate
نویسندگان
چکیده
Hierarchical nanostructures of CuO nanoflowers on nanograss were investigated for self-cleaning and surface plasmonic applications. We achieved the hierarchical nanostructures using one-step oxidation process by controlling the formation of flower-like nanoscale residues (nanoflowers) on CuO nanograss. While the nanograss structure of CuO has a sufficient roughness for superhydrophobic characteristics, the additional hierarchy of nanoflowers on nanograss leads to a semi-reentrant structure with a high repellency even for a very small droplet (10 nL) of low surface tension liquid such as 25 % ethanol (~35 mN/m), thus providing non-wettable and self-cleaning properties. Furthermore, the CuO hierarchical nanostructure serves as a substrate for surface-enhanced Raman spectroscopy (SERS). Both of the CuO nanograss and nanoflower provide many nanoscale gaps that act as hot-spots for surface-enhanced Raman signal of 4-mercaptopyridine (4-Mpy), thus enabling a non-destructive detection in a short analysis time with relatively simple preparation of sample. Especially, the CuO nanoflower has larger number of hot-spots at the nanogaps from floral leaf-like structures, thus leading to three times higher Raman intensity than the CuO nanograss. These multifunctional results potentially provide a path toward cost-effective fabrication of a non-wettable surface for self-maintenance applications and a SERS substrate for sensing applications.
منابع مشابه
Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering.
The physicochemical properties of noble metal nanocrystals depend strongly on their size and shape, and it is becoming clear that the design and facile synthesis of particular nanostructures with tailored shape and size is especially important. Herein a novel class of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies and optical properties are prepared for...
متن کاملUnification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles
stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...
متن کاملApproaches to nanostructure control and functionalizations of polymer@silica hybrid nanograss generated by biomimetic silica mineralization on a self-assembled polyamine layer
We report the rational control of the nanostructure and surface morphology of a polyamine@silica nanoribbon-based hybrid nanograss film, which was generated by performing a biomimetic silica mineralization reaction on a nanostructured linear polyethyleneimine (LPEI) layer preorganized on the inner wall of a glass tube. We found that the film thickness, size and density of the nanoribbons and th...
متن کاملSwift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route
Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-l...
متن کاملSynthesis of size-tunable chitosan encapsulated gold-silver nanoflowers and their application in SERS imaging of living cells.
Anisotropic metallic nanoparticles (NPs) possess unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS). However, their preparation by an efficient, biocompatible and high yield synthetic method is still challenging. In this work, we demonstrate a simple and reproducible way to produce chitosan (CS) encapsulated gold-silver nanoflowers by seq...
متن کامل